
Answering comparison questions in SHAKEN: A progress report

Shawn Nicholson

Qualitative Reasoning Group
Northwestern University

1890 Maple Avenue
Evanston, IL, 60201, USA

nicholson@northwestern.edu

Kenneth D. Forbus

Qualitative Reasoning Group
Northwestern University

1890 Maple Avenue
Evanston, IL, 60201, USA
forbus@northwestern.edu

Abstract
An important class of questions for knowledge based
systems concern comparisons, such as “How is X like Y?”
and “How are X and Y different?” This paper describes
how we have used a cognitive simulation of analogical
processing to answer such questions, to support domain
experts in entering new knowledge. We outline techniques
for case construction and summarization of comparison
results that have been developed and refined based on an
independent formative evaluation. In addition to these
techniques, we discuss the role of the comparison system in
SHAKEN, the larger system in which they are embedded,
and our plans for further improvements.

Introduction
One important task of knowledge-based systems is
answering questions. Users ask questions of knowledge-
based systems for many reasons: The question itself may
be relevant to some larger task that only the user is privy
to, the question might relate to some task that the user and
software are jointly undertaking, or the question might be
asked as a way of seeing what the system understands.
The latter is especially important in knowledge capture,
where the user is a domain expert (rather than an AI
expert) who is interacting with the system in order to build
up its knowledge base by interacting with it, much as a
teacher might interact with a student. In knowledge
capture tasks, comparison questions are particularly
important. Two examples of comparison questions are
 “How are X and Y similar?”
 “How are X and Y different?”
where X and Y are two concepts that the system knows
something about. The importance of comparison questions
arises from several properties. First, comparison provides
a context for describing knowledge. Asking how X is
similar to Y focuses on what they have in common, rather
than just asking for an exhaustive listing of what is known
about X. Second, comparison provides a means of
highlighting differences. A common trap in knowledge-
based systems is reading more into the system’s
knowledge based on the names given to concepts as
opposed to what is actually stated about the concepts. For

instance, a system that had concepts for DNAMolecule and
RNAMolecule should know that a DNAMolecule has two
strands while an RNAMolecule has only one. Third,
comparison provides suggestions for additional knowledge
that could be entered. Missing differences, as in the
previous example, is one source of suggestions. Missing
similarities are another: If the system suggests that
RNAMolecule might have strands, based on a comparison
with DNAMolecule, the user can consider whether or not
that suggestion, or some variation of it, is valid.

This paper describes new techniques we have developed
for answering comparison questions. These techniques
rely on ideas from structure-mapping [6], a psychological
theory of analogy and similarity. Our algorithms use the
structure-mapping engine (SME) [1,5,4] as the comparison
mechanism. That stable foundation only provides part of
the answer, however. Our techniques address three key
issues in answering comparison questions:

1. Case construction. How should the concept
descriptions be automatically generated from the
underlying knowledge base?

2. Evaluating candidate inferences. How should the
inferences generated from the comparison be
tested?

3. Summarization. How should the results of the
comparison be used to generate a helpful answer?

This paper describes how we address these issues in
algorithms for answering comparison questions. These
algorithms have been integrated into two knowledge
formulation systems, and tested successfully (although
there is ample room for improvement, as we describe
below) with domain experts in independent evaluations.
We start by briefly reviewing the relevant psychology and
properties of SME. Then we summarize the SHAKEN
knowledge formulation system, how our work fits in it,
and the formative feedback we received through the
evaluation process. Next we describe our algorithms for
case construction, evaluating candidate inferences, and
summarization, including how we have addressed the
problems found through the evaluation process. Finally,
we discuss the broader implications of this work.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
Answering comparison questions in SHAKEN: A progress report

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northwestern University ,Qualitative Reasoning Group, Department of
Computer Science,1890 Maple Avenue,Evanston,IL,60201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Structure-mapping: A brief review
Gentner’s structure-mapping theory [6] provides an
account of analogy and similarity based on comparisons of
structured representations. According to structure-
mapping theory, structural alignment takes as input two
structured representations (base and target) and produces
as output a set of mappings. Each mapping consists of a
set of correspondences that align items in the base with
items in the target and a set of candidate inferences, which
are surmises about the target made on the basis of the base
representation plus the correspondences. The constraints
on the correspondences include structural consistency, i.e.,
that each item in the base maps to at most one item in the
target and vice-versa (the 1:1 constraint) and that if a
correspondence between two statements is included in a
mapping, then so must correspondences between its
arguments (the parallel connectivity constraint). Which
mapping is chosen is governed by the systematicity
constraint: Preference is given to mappings that match
systems of relations in the base and target. Each of these
theoretical constraints is motivated by the role analogy
plays in cognitive processing. The 1:1 and parallel
connectivity constraints ensure that the candidate
inferences of a mapping are well-defined. The
systematicity constraint reflects a (tacit) preference for
inferential power in analogical arguments.

Although structure-mapping started as a model of
analogy, it has been extended to model similarity and
comparison more generally [7,8]. Some of these results
bear directly on the problem at hand. First, the same
structural alignment process used in analogy is also used in
human similarity judgments, including within-domain
comparisons. Thus SME [1,5,4] our cognitive simulation
of structural alignment, will provide results that human
users should find natural. Second, when asked to describe
differences, people use the same structural alignment
process to figure out commonalities. This induces a
distinction between two types of differences. Alignable
differences are differences related to commonalities. An
example of an alignable difference might be the color of
two cars or their horsepower – differences in properties of
corresponding arguments. All other differences are non-
alignable differences. This distinction is important
because alignable differences are more psychologically
salient than non-alignable differences. Algorithms for
answering questions about differences need to exploit this
distinction to provide results that their users will find
natural.

These psychological results provide important
constraints on the process of answering comparison
questions, since we need to produce results that will be
natural for the human questioners. Since structural
alignment is used for comparisons, we can use SME as a
component to compare the descriptions of two concepts.
The correspondences it produces provide the set of

similarities that a person would compute, given the same
descriptions. These same correspondences are used in
computing alignable differences. Non-alignable
differences can be extracted by analyzing the non-
overlapping parts of the descriptions mapped. These
computations are described in more detail below. Of
course, the psychological constraints are only part of the
puzzle. The demands of the task and the system that our
algorithms are embedded also provide key constraints. We
discuss these next.

Figure 1: An early example of a comparison answer

Context: Knowledge Formation Systems

One of the biggest bottlenecks to the widespread
deployment of knowledge-based systems is the difficulty
of building large knowledge bases. DARPA’s Rapid
Knowledge Formation program is tackling this problem by
creating systems that can be used by domain experts to
create their own knowledge bases, without the constant
intervention of AI experts. This requires the software to
communicate with the domain expert in understandable
terms: To present what it knows, to assimilate new
knowledge, and to enable the expert to test its knowledge
by questioning it. Two integrated systems have been
developed by teams, one led by SRI and one led by
Cycorp. We are supplying analogical processing services
for both systems. This paper focuses on our work for the
SRI system, called SHAKEN.

SHAKEN uses several methods to make its knowledge
understandable to human experts. At the level of content,
SHAKEN’s knowledge is organized into a library of
components that can be composed to create domain-
specific descriptions. The components are implemented in
a frame system called KM [1]. In terms of display, experts
interact with the system via a formalized version of
concept maps, a technique that has been widely used in
education. Browsing and search tools provide navigation
aids, and a forms-based interface provides the means of
asking questions [2]. Our software is used whenever one
of the two comparison questions listed at the start of the
paper is asked. The format of our answers evolved during
development; Figure 1 shows an example.

The basic algorithm for describing the similarities
between two concepts X and Y is

1. Construct case descriptions c(X), c(Y) for X and Y
2. Use SME to compare c(X) and c(Y)
3. Summarize the correspondences found via SME.

The algorithm for describing the differences is very
similar:

1. Construct case descriptions c(X), c(Y) for X and Y
2. Use SME to compare c(X) and c(Y)
3. Derive alignable and nonalignable differences

based on the SME results
4. Summarize the correspondences and differences

With the exception of step #2 in both algorithms, our
algorithms for each step have evolved significantly in
response to user feedback. The next section describes our
solutions and their evolution, in terms of the three issues
introduced in the beginning of the paper.

Our approach
Our techniques can be divided into three categories. First,
case construction techniques extract a relevant subset of
knowledge about the concepts to be compared from the
knowledge base. Second, candidate inference filtering
eliminates “obviously wrong” conjectures. Third,
summarization techniques simplify the results of the
comparison and arrange them in a form that should be
easier for users to apprehend. We discuss each in turn.

Case construction
Since the task is knowledge entry, we are comparing
general conceptual knowledge from the KB rather than
concrete examples. This conceptual knowledge is
instantiated for comparison by creating a skolem
individual and instantiating knowledge about it. Our initial
algorithm was very simple:
 Input: a concept X
 Output: Set of facts F

1. Retrieve all facts from KM about X
2. For each fact which mentions another entity

Y
a. Add Y to F
b. If |F| < N (where N is a fixed

maximum number of expressions)
If Y has not been seen before,
recurse, retrieving all facts about Y

The main advantage (and, as it turns out, drawback) of
this algorithm is that it did not require more specific
contextual knowledge (as used in [9]). Since almost
everything in the KB is interconnected, tight bounds had to
be drawn. We kept N at about 300 initially, thinking that
this would lead to reasonable amounts of information for
matching. We discovered that this led to superfluous
output, and obscured details that users considered
important. The summarization techniques discussed below
ameliorated this problem to some degree, but clearly a
better case construction method was called for.

How can the system detect what the user thinks is
important? Since SHAKEN is designed for knowledge
capture, users are entering and browsing knowledge using
a concept map display, dynamically expanding and
contracting the level of detail shown about aspects of a
concept based on what they are doing. We decided to take
advantage of the fact that these displays tacitly express
what users are currently thinking of as important, and use
this information to guide case construction:
 Input: a concept map representing concept X
 Output: Set of facts F

1. Retrieve the facts and entities from the
concept map for concept X as currently
displayed.

2. For each entity that is in a leaf position in the
concept map, extend it by retrieving all facts
from KM that mention that entity.

In other words, the case information extracted is what
the user has chosen to display, which presumably is related
to what they are thinking about currently, plus one level of
expansion at the leaves, to provide more accurate matches
for them. We believe that this algorithm will help
eliminate the superfluous detail problem. At the very least
it provides the user more control over the process, letting
them play a more active role.

Evaluating Candidate inferences
Initially we did not perform any evaluation of candidate
inferences, due to time constraints. This was a mistake in
retrospect, since having suggestions appear that were
“obviously” wrong in terms of what the system had
already been told eroded trust in the rest of the answer. By
contrast, suppose the user knows that the system will only
make suggestions that might, as far as it knows, be true.
Such suggestions that the user thinks are false provide
evidence as to what additional knowledge should be
entered, in order to rule them out. This argument suggests
that the most important evaluation to be done of candidate
inferences is to filter out those which are already known to
be incorrect.

Now we use KM-based reasoning techniques to check
every candidate inference, and eliminate those which are
provably false given the current KB contents. Would more
sophisticated evaluation of candidate inferences add value
in this task? We believe that the answer is no. During
knowledge entry concept descriptions tend to be
incomplete, so it seems unlikely that much would be
gained by additional validation effort.

Summarizing results
As noted above, answering both similarity and difference
questions relies on the correspondences found by SME.
In the case of similarity questions, the focus is on the
correspondences. For difference questions, the
correspondences are used to figure out what differences

should be most salient to users, so that those can be
presented before other differences.

Similarities are presented in terms of a list of the entities
that correspond in the two concepts. SME chooses entity
correspondences based on relational overlap (see [5]), so
the correspondences between expressions that suggest an
entity correspondence are available via drill-down as a
form of explanation. Such explanations by their nature are
evidential, often leading to “bushy” justifications1. Their
size depends on the relative overlap in the relational
structure, and provides a useful explanation as to why the
match came out the way it did.

One serious problem we found is that, with the large
descriptions produced by our original case construction
technique, the number of entity correspondences was huge,
and overwhelmed users. One useful trick was to cluster
entity correspondences by types of entities involved (e.g.,
those entity correspondences involving strands), which
ameliorated but did not resolve the problem. We think that
entity-type summarization combined with our new case
construction method will make a substantial improvement.

In summarizing differences, since alignable differences
are more salient we present them first. An important type
of alignable difference are property differences, where two
entities that play similar roles are of different types. These
are detected by examining the attributes that hold for
corresponding entities. Like correspondences, drill-down
is available to inspect why the matcher found a specific
difference interesting. Candidate inferences, computed in
both directions, are also summarized as interesting
differences. Suppose two concepts are very similar in the
user’s mind. In that context, a candidate inference is
generally either a statement about the other description that
needs to be made (in some form or another), or indicates
that other knowledge should be added to rule out that
possibility.

Non-alignable differences are mentioned last. Non-
alignable differences are statements that are true in one
description but not the other, with no correspondences in
common. In this knowledge capture task, such differences
have a similar import to candidate inferences in terms of
what they should suggest for the expert.

Evaluation
The first evaluation of SHAKEN occurred in the summer
of 2001, as part of the DARPA Rapid Knowledge
Formation program. SHAKEN was delivered to IET, an
independent contractor, who then had biology graduate
students use it to build knowledge bases about textbook
biology knowledge. Overall, the results were encouraging.

1 The difference between such justifications and the more
typical low branching factor justifications found in
standard dependency structures can be a source of
confusion, but since this is the nature of analogical
reasoning, the problem is one of training.

Unfortunately, as indicated above, the original versions of
our algorithms did not fare so well.

The evaluators found three major problems:
1. Too much information was presented. This made it

difficult for users to understand the analogy and
find information that they were looking for. They
wanted an even higher level summary of the
analogy.

2. Differences that were obviously wrong were
included in the explanation.

3. Similarities that users expected were sometimes not
found.

We believe that the change in case construction will be a
major step towards solving the first problem, since the
original algorithm had no way of knowing what users
thought was important. However, we suspect that
judicious dynamic rerepresentation of the conceptual
descriptions, based on the outcome of an initial match, will
be needed to completely resolve this problem. The second
problem has been addressed by using KM inference to
filter candidate inferences, as described above.

The third problem is the most difficult, because it is in
part a function of the KM style of representation. Recall
that each expression match is a piece of evidence about
what entities should be placed into correspondence. There
are two factors that work in opposite directions to make
matching more difficult. First, the amount of
discrimination a relationship provides depends on the size
of the relational vocabulary available. If most of the
relationships are the same (e.g., Part-of in many KM
concepts), then there is little reason to choose one match
over another, and the choice is driven by attribute
information about the entities involved. Second, if experts
are less uniform in their representation choices (e.g., using
Part-of in one description and Basic-Structural-
Unit for the similar relation in another), the matcher’s job
is harder. The second problem is easier to solve than the
first, in that techniques such as minimal ascension have
been used to allow close relational matches. Some of this
is simply a function of the concepts not being sufficiently
articulated, and can serve as a signal that entering more
knowledge to emphasize (or rule out) the similarity
between the concepts would be useful.

Although we are not pleased with the summer results,
they still constitute valuable information: We learned that
the simplest techniques are insufficient, and we learned
how our summaries needed to evolve to be more useful to
users. All of the changes described in this paper have been
implemented in the new version of the SHAKEN system,
and will be tested in the midterm evaluation in January
20022. This paper will be updated with those results once
they are available.

2 From a purely experimental design standpoint, it would
be informative to do a sensitivity analysis to see how much
improvement each of these changes provides.

Discussion
The three issues we addressed here (case construction,
filtering candidate inferences, and summarization) are
relevant beyond just answering comparison questions:
these are issues that any theory of an analogical reasoning
task must address. We believe that the solutions we
presented here are more broadly relevant. For example,
our use of what is effectively discourse context to
constrain case construction is very likely to be applicable
to any interactive analogical reasoning context, although
the evidence as to what is relevant may be harder to extract
in less visual interfaces. Similarly, in evaluating candidate
inferences, the technique of filtering out conjectures that
can cheaply be disproved seems generally applicable.
Also, our correspondence-based method of summarizing
similarities and the decomposition of differences are
reasonable first-cut solutions. However, many issues
remain to be explored, especially when other analogical
processing tasks are considered. Some of these issues are:

• In case construction, the key questions seem to be (a)

how should cues as to the scope of material to include
be ascertained given the task context, (b) how much
should case construction be driven by incremental
outputs of the summarization process, (c) what notions
of salience are relevant for a given task?

• In evaluating candidate inferences, the key questions
seem to be (a) how much work should be spent
disproving a conjecture, (b) should work be spent
proving a conjecture, and (c) how should skolems in
candidate inferences be resolved?

• In summarization, the key questions seem to be (a) what
set of rerepresentation techniques would provide
concise, informative human-like summaries and (b)
how can drill-down be supported without
overwhelming the user?

Answers to these questions will be an important next step
in the development of the theory of analogical reasoning.

Acknowledgements
This research is being carried out as part of the DARPA
Rapid Knowledge Formation Program. The initial case
construction algorithm was based on code written by Peter
Clark. We thank Vinay Chaudhri for insightful
comments, and the entire SHAKEN team for their
excellent work, without which this research would not be
possible.

Unfortunately, such an experiment is far too expensive to
carry out in these circumstances.

References
1. K. Barker, B. Porter, and P. Clark. A Library of

Generic Concepts for Composing Knowledge Bases.
First International Conference on Knowledge Capture,
October 21-23, 2001

2. P. Clark, J. Thompson, K. Barker, B. Porter, V.
Chaudhri, A. Rodriguez, J. Thomere, S. Mishra, Y. Gil,
P. Hayes, T. Reichherzer. Knowledge Entry as the
Graphical Assembly of Components. First
International Conference on Knowledge Capture,
October 21-23, 2001.

3. Falkenhainer, B., Forbus, K., Gentner, D. (1989) The
Structure-Mapping Engine: Algorithm and examples.
Artificial Intelligence, 41, pp 1-63.

4. Forbus, K. 2000. Exploring analogy in the large. In
Gentner, D., Holyoak, K. and Kokinov, B. (Eds)
Analogy: Perspectives from Cognitive Science.
Cambridge, MA: MIT Press.

5. Forbus, K., Ferguson, R. and Gentner, D. (1994)
Incremental structure-mapping. Proceedings of the
Cognitive Science Society, August.

6. Gentner, D. (1983) Structure Mapping: a theoretical
framework for analogy. Cognitive Science, 7: 155-170

7. Gentner, D. and Markman, A.B. (1995) Similarity is
like analogy: Structural alignment in comparison. In C.
Cacciari (Ed.), Similarity in language, thought, and
perception (pp. 111-147). Brussels: BREPOLS.

8. Gentner, D. and Markman, A. 1997. Structure Mapping
in Analogy and Similarity. American Psychologist,
January, pp 45-56

9. Mostek, T., Forbus, K, Meverden, C. (2000) Dynamic
case creation and expansion for analogical reasoning.
Proceedings of AAAI-2000. Austin, TX.

